

Motivation –

Stereo vision under night-time conditions –

- An important but a relatively unexplored area.
- Manifold challenges severe noise, varying glow and glare, multiple $E_{StructureSmooth}(I_{s1}, I_{s2}) = \sum (RTV(I_{s1}(p)) + RTV(I_{s2}(p)))$ moving light-sources, lens-flares; no reliable datasets, etc.
- We propose to handle the problem of noise first in this paper.

Problems with conventional denoising –

- PSNR not an optimal measure for envisioning stereo quality.
- Maximizing PSNR for maximizing stereo quality is not necessary. Low-PSNR but more stereo-consistent images can still perform better.

Our proposed solution –

- Obtain piecewise-constant structures from the images by $TV L_2$ style of decomposition. Give-away the fine-details (and some PSNR), as they are inextricably mixed with noise, and hence, more difficult to recover.
- Obtain the structures stereo consistently by injecting a BCC+GCC based stereo constraint into the above decomposition objective.

Into the Twilight Zone: Depth Estimation using Joint Structure-Stereo Optimization

Aashish Sharma, Loong-Fah Cheong Department of ECE, National University of Singapore

(* is used to denote constant variables)

Optimization – $E_{StructureData}(I_{s1}, I_{s2}) = \sum \left((I_{s1}(p) - I_{n1}(p))^2 + (I_{s2}(p) - I_{n2}(p))^2 \right)$ $E_{StereoData}(I_{s1}, I_{s2}, D_2^*) = \sum_{n} \left(\alpha \cdot \sum_{q \in W} \left(I_{s2}(q) - I_{s1} \left(q - D_2^*(q) \right) \right)^2 \right)$ + $\sum \min \left(\left| \nabla I_{s2}(q) - \nabla I_{s1}(q - D_2^*(q)) \right|, \theta \right)$ $E_{StereoSmooth}(D_2) = \sum_{p} \sum_{q \in N4_p} \begin{cases} \lambda_{SS1}, & \text{if } [|D_2(p) - D_2(q)| = 1] \\ \lambda_{SS2}, & \text{if } [|D_2(p) - D_2(q)| > 1] \end{cases}$

Solve $E_{structure}(I_{s1}^*, I_{s2}, D_2^*) \sim E_{Is2}(I_{s2})$ by expressing $E_{Is2}(I_{s2}) = \mathbf{f}(I_{s2}) + \mathbf{g}(I_{s2})$, where $f(\cdot)$ and $g(\cdot)$ contain the convex and non-convex terms respectively. Due to "windowed" operations, the above form is difficult to solve. However, with some algebraic manipulations, we can simplify it to -

 $\min_{I_s = i} E_{Is2} = \min_{I_s = i} f(I_{s2}) + \sum_{I_s = i} g_s(Z_i) \quad \text{s.t} \quad Z_i = A_i(I_{s2}) + B_i \quad \text{optimization problem!}$ which can now be solved with the ADMM variant discussed in [1][2] (Linearized ADMM with "global" consensus (I_{s2}) among "local" variables (Z_i) ; A_i and B_i are some linear operators independent of I_{s2}). This gives us the solution for I_{s2} -

 $\overrightarrow{I_{s2}}^{k+1} \coloneqq \left(\left(2\mathbb{1} + 2\lambda_S \mathbb{L}_{I_{s2}} + \lambda_{SD} \alpha (\mathbb{1} - W_2)^T (\Lambda + \Lambda^T) (\mathbb{1} - W_2) \right) + \rho \sum A_i^T A_i \right)^{-1}$

$$\left(\left(2\vec{I_{n2}} + \lambda_{SD}\alpha(\mathbb{1} - W_2)^T (\Lambda + \Lambda^T) W_1 \vec{I_{s1}} \right) - \rho \right)$$

 $\overrightarrow{Z_i}^{k+1} \coloneqq \operatorname{prox}_{\frac{1}{2}g_*}(A_i \overrightarrow{I_{s2}}^{k+1} + \overrightarrow{B_i} + \overrightarrow{U_i}^k) \overrightarrow{U_i}^{k+1} \coloneqq \overrightarrow{U_i}^k + A_i \overrightarrow{I_{s2}}^{k+1} + \overrightarrow{B_i} - \overrightarrow{Z_i}^{k+1}$ Similarly, obtain the solution for $E_{structure}(I_{s1}, I_{s2}^*, D_2^*) \sim E_{Is1}(I_{s1})$

After solving $E_{Structure}(I_{s1}, I_{s2}, D_2^*)$, solve $E_{stereo}(I_{s1}^*, I_{s2}^*, D_2)$ using SGM [3], and then repeat solving the two problems until convergence. Overall process –

Solve $E_{structure}$ Input I_{n1} , I_{n2} w.r.t (*I*_{s2}, *I*_{s1}) (until convergence)

Linearly constrained

update rule for "global" Is2

update rule for "local" Z_i , dual U_i

Results –

															-	
δ	BM3D+MS				DnCNN+MS				SS-PCA				Ours			
	25	50	55	60	25	50	55	60	25	50	55	60	25	50	55	60
1px	46.45	59.55	61.29	63.35	43.43	55.06	57.76	58.97	51.39	60.04	66.48	69.17	47.74	54.19	55.22	56.59
3px	22.68	30.57	33.72	34.63	22.04	29.62	32.67	32.68	30.41	35.32	42.02	43.67	25.12	29.00	29.45	30.48
5px	16.22	22.01	24.17	25.07	16.82	21.53	24.36	23.94	23.14	26.07	31.48	32.93	18.21	20.94	20.60	21.81

		D	nCNN+N	4S		Ours						
	$\delta = 1 \mathrm{px}$	$\delta = 2px$	$\delta = 3 \mathrm{px}$	$\delta = 4 p x$	$\delta = 5 \mathrm{px}$	$\delta = 1 \mathrm{px}$	$\delta = 2px$	$\delta = 3px$	$\delta = 4 p x$	$\delta = 5 px$		
Set1	63.86	41.66	30.96	24.40	19.66	58.76	33.75	23.03	16.99	12.31		
Set2	58.96	28.82	16.71	10.73	7.35	57.76	28.80	16.10	10.29	6.82		
Set2 (f.t)	58.96	28.82	16.71	10.73	7.35	56.45	26.43	14.54	9.20	6.08		

Summary –

- high-PSNR unoptimized counterparts.

References –

[1] Parikh, N., Boyd, S., et al.: Proximal algorithms. Foundations and Trends R in Optimization 1(3) (2014) 127{239 [2] Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.: Distributed optimization and statistical learning via the alternating direction method o multipliers. Foundations and Trends R in Machine Learning 3(1) (2011) 1{122 [3] Hirschmuller, H.: Accurate and efficient stereo processing by semi-global matching and mutual information. In: CVPR'2005 [4] Scharstein, D., Hirschmeuller, H., Kitajima, Y., Krathwohl, G., Nesic, N., Wang,X., Westling, P.: High-resolution stereo datasets with subpixel-accurate ground truth. In: German Conference on Pattern Recognition, Springer (2014) 31{42 [5] Maddern, W., Pascoe, G., Linegar, C., Newman, P.: 1 Year, 1000km: The Oxford RobotCar Dataset. IJRR 36(1) (2017) 3{15 [6] Xu, L., Yan, Q., Xia, Y., Jia, J.: Structure extraction from texture via relative total variation. ACM Transactions on Graphics (TOG) 31(6) (2012) 139

Evaluation on Middlebury[4] (with AWGN of level $\sigma_n \in \{25, 50, 55, 60\}$)

Evaluation on the Oxford RobotCar night-time dataset [5]

A joint structure-stereo optimization objective is proposed to solve the problem of stereo vision under night-time (or low-SNR) conditions. Low-PSNR but stereo-optimized images can still perform better than their